
Windows Local Kernel
Exploitation

HITBSecCon 2004 Kuala Lumpur

sk@scan-associates.net
Co-founder, Security Consultant, Software Architect
Scan Associates Sdn Bhd

Overview
 Windows Privilege Escalations
 Windows Kernel 101
 Device driver communication problem

 DeviceIOControl
 Finding
 Exploiting

 Kernel shellcode
 Locating base address of device

 Undocumented API (NtQuerySystemInformation)
 Demo

Windows Privilege Escalation

 Exploiting SYSTEM privilege application:
 Buffer overflow in Still Image Service
 ssinc.dll
 IIS IDQ.DLL
 Buffer overflow in POSIX subsystem

 LPC problems
 Named pipe impersonation
 Shatter attack
 Kernel bugs

LPC problems

 Local Procedure Call allows processes to
communicate

 Various problems discovered by Todd Sabin
 NtImpersonateClientOfPort()

 http://www.bindview.com/Support/RAZOR/Advisorie
s/2000/adv_NTPromotion.cfm

 http://www.bindview.com/Support/RAZOR/Advisorie
s/2000/LPCAdvisory.cfm

 Signedness problem in NTLM Security
Support Provider (NTLMSSP) LPC port
 http://www.bindview.com/Support/RAZOR/Advisorie

s/2001/adv_NTLMSSP.cfm

Named Pipe Impersonation

 A server named pipe can impersonate
its client

 Attacker create named pipe before the
server create it

 A privileged client connect to our server
named pipe, we can impersonate the
client to get its privilege

 http://www.blakewatts.com/namedpipepa
per.html

Shatter Attack

 Send Windows Message to any process
 Basic Shatter:

 Locate a privileged Windows
 Send shellcode to target process space
 Send WM_TIMER message to jump to shellcode in

its own space
 Advance Shatter is still just Shatter
 Require Desktop
 Also known as Local Local attack
 Limited use

Kernel Bugs

 Problems that exist in Kernel land
 Will give us highest access, same level

as the OS
 Windows Kernel is not a well

documented area
 Generally more complex than user land
 Probably still plenty of ‘fish’
 Kernel bugs is gaining popular

Known Kernel Bugs

 Microsoft Windows MUP overlong request kernel overflow
 http://www.nsfocus.net/index.php?act=advisory&do=view&adv_id=21

 Microsoft Windows XP Redirector Local Buffer Overflow
Vulnerability
 http://www.nsfocus.com/english/homepage/research/0301.htm

 Buffer Overrun in Windows Kernel Message Handling
 http://www.microsoft.com/technet/security/bulletin/MS03-013.mspx

 Windows VDM TIB
 http://www.eeye.com/html/research/advisories/AD20040413E.html

 Windows Expand-Down Data Segment
 http://www.eeye.com/html/research/advisories/AD20040413D.html

 Device Driver Communication Problem
 http://sec-labs.hack.pl/papers/win32ddc.php

Windows Kernel 101

Every kernel modules,
device driver share the
same 2GB memory

Each process has 2GB
memory

Ring 0Ring 3

Memory address from
0x80000000 to
0xFFFFFFFF

Memory address from
0x00000000 to
0x7FFFFFFF

Freedom!Sandbox!

Kernel LandUser Land

…Windows Kernel 101

 Windows kernel land consists of:
 Kernel
 Executives

 Process and Thread manager, I/O Manager, etc
 Win32 User GDI
 Device Driver

 The kernel contains many important
executives object which control the
application in user land

Device Driver

 Loadable Kernel Module (LKM)
 Once in kernel, device driver is trusted
 Ability to modify kernel object to change

behavior of application in user land
 Application such as personal firewall,

antivirus, etc sometimes install device
driver to change behavior of user land:
 Check all socket connections
 Check all file access, etc

Device Driver Communication

 Device driver can accept data from user
land via:
 ReadFile() / WriteFile()
 DeviceIoControl()

 Before it can be used, we must open the
driver:
 CreateFile()

 We can access device driver much like
a file

Data flow

User-mode API
DeviceIoControl(), etc

Internal API (Ntxxx)
NtDeviceIoControlFile(), etc

I/O Manager (Ioxxx)
IopXxxControlFile(), etc

Kernel-mode device driver
DriverDispatcher(), etc

ProbeForWrite,
IoAllocateIrp, etc

Device Driver Skeleton

 Basic device driver
 DriverEntry()
 DriverDispatcher()
 DriverUnload()

 Data from DeviceIoControl() will be
process in DriverDispatcher()

DeviceIoControl()

 Communication between user land and
kernel land

 User program send control code to
device driver via DeviceIoControl() API

 Device driver receive control code and
process

 Device driver return output to user land
via output pointer specified by caller

DeviceIoControl

 BOOL DeviceIoControl(
HANDLE hDevice, // handle to device
DWORD dwIoControlCode, // operation
LPVOID lpInBuffer, // input data buffer
DWORD nInBufferSize, // size of input data

//buffer
LPVOID lpOutBuffer, // output data buffer

DWORD nOutBufferSize, // size of output
//data buffer

LPDWORD lpBytesReturned, // byte count
LPOVERLAPPED lpOverlapped //overlapped

//information
);

lpOutBuffer

 What if output buffer is a memory address in
kernel?

 Will we be able to overwrite any kernel
address?

 What if we point it to overwrite important
token?

 What if we overwrite function pointer?
 (Un)Fortunately, I/O Manager provides buffer

handling for device driver

Type of buffer management

 Buffered I/O (Method 0)
 I/O manager allocates enough buffer copy

from/to sender’s data
 Direct I/O (Method 1 and 2)

 Sender’s buffer is lock and I/O manager
pass the pointer of the memory to driver

 Neither I/O (Method 3)
 No buffer management

CTL_CODE

 #define CTL_CODE(DeviceType, Function,
Method, Access) (((DeviceType) << 16) |
((Access) << 14) | ((Function) << 2) |
(Method);

MethodFunctionAccessDevice Type

32 bits

2 bits16 bits 2 bits 12 bits

Neither I/O

 Device I/O Control Code that ends with
011b
 0xXXXXXXX3
 0xXXXXXXX7
 0xXXXXXXXB
 0xXXXXXXXF

 Output pointer can be anywhere,
including kernel land

 May allow arbitrary memory write

Finding Neither I/O

 Source code and Header file
 Application hooking

 strace –p PID
 Hook system wide *DeviceIoControl*

 From the book, “Undocumented Windows
2000 Secrets”

 C:\w2k_hook *DeviceIoControl*

Find Neither I/O by Source

 Bug found by mslug
(https://www.xfocus.net/bbs/index.php?act=SE&f=16&t
=32580&p=115340&hl=)
 #define BIOCGSTATS 9031 //0x2347

 Other potential targets in Packet.h:
 #define BIOCISDUMPENDED 7411 //0x1CF3
 #define BIOCSRTIMEOUT 7416 //0x1CF8
 #define BIOCSMODE 7412 //0x1CF4
 #define BIOCSWRITEREP 7413 //0x1CF5
 #define BIOCSMINTOCOPY 7414 //0x1CF6
 #define BIOCGEVNAME 7415 //0x1CF7
 #define BIOCSENDPACKETSSYNC 9033 //0x2349
 #define BIOCSETDUMPLIMITS 9034 //0x234A

Find Neither I/O via System Hook

 C:\w2k_hook *DeviceIoControl*
 1CF:s0=NtDeviceIoControlFile(!2B8.3B4="\??\NAVAP",p,p,p,i

0.4,n222A87,p3CFFEF8,n20,p3CFFEF0,n4)1C4963F2B6F71
D0,530,3

 18D:s0=NtDeviceIoControlFile(!5C8.344="\Device\Tcp",p330,
p,p,i0.38,n120003,p6F4D8,n24,pB01E90,n8000)1C494FBFF
5C1960,42C,A

 606:s0=NtDeviceIoControlFile(!E4.898="\Device\Afd\Endpoint
",p1E4,p,p,i0.0,n12047,p1A2F6F0,nD4,p,n0)1C495035A74B1
E0,648,1D

 1:s0=NtDeviceIoControlFile(!354.120="\??\shadow",p,p,p,i0.0,
n140FFB,p6B2F8,n0,n0)1C495C2244759C0,634,27

 3201:s0=NtDeviceIoControlFile(!1F0.2D8="\Device\LanmanD
atagramReceiver",p2D0,p,p,i0.50,n130023,pD5FD24,n50,pA4
FF8,n1000)1C4964E8570CB16,584,47

Exploiting DDCV

 Norton A/V Enterprise
 Contains NAVAP.sys device driver
 Allows communication from user program via

DeviceIoControl()
 The following supported CTL_CODE:

 PAGE:0001649D cmp ecx, 222A83h
 PAGE:000164A5 cmp ecx, 222A87h
 PAGE:000164AD cmp ecx, 222A8Bh
 PAGE:000164B5 cmp ecx, 222A8Fh
 PAGE:000164BD cmp ecx, 222A93h
 PAGE:000164C5 cmp ecx, 222A97h
 PAGE:000164CD cmp ecx, 222A9Bh

 Uses Neither I/O heavily (for performance?)

Overwrite Kernel memory

 With the ability to write to kernel we can:
 Overwrite return address
 Overwrite function pointer
 Overwrite switch jump table
 Overwrite Service Descriptor Table
 etc

 Once overwritten, kernel will jump to us
when it reach that code

Pseudo exploitation

 Determine output value of the vulnerable
DeviceIoControl()

 Allocate memory which device will jump to
 hMem = VirtualAlloc(myAddress, 0xf000, MEM_COMMIT,

PAGE_EXECUTE_READWRITE);
 Copy the shellcode into allocated memory
 Open the driver

 handler = CreateFile()
 Send first signal to overwrite jump table

 DeviceIoControl(handler, 0xXXXXXXX7, inBuffer, 0x20,
outBuffer, 4, &n, 0))

 Send second signal to jump to shellcode

Overwrite any memory

 Overwrite switch jump table
 Many device driver has switch statement to process user request

in DriverDispatcher() that look like this:

NTSTATUS NPF_IoControl(IN PDEVICE_OBJECT DeviceObject,IN PIRP Irp)
{…
switch (FunctionCode){

case BIOCGSTATS: //function to get the capture stats
…
EXIT_SUCCESS(26);
break;

case BIOCGEVNAME:
…
break;

case BIOCSENDPACKETSSYNC:
…

}

Switch jump table

 In Assembly:

PAGE:0002F049 loc_2F049: ; CODE XREF: sub_2F038+D j
PAGE:0002F049 mov eax, [ebp+arg_0]
PAGE:0002F04C dec eax
PAGE:0002F04D cmp eax, 0Fh ; switch 16 cases
PAGE:0002F050 ja loc_2F3E1 ; default
PAGE:0002F056 jmp ds:off_2F3E8[eax*4] ; switch jump
...
PAGE:0002F3E8 off_2F3E8 dd offset loc_2F05D ; DATA XREF:

sub_2F038+1E r
PAGE:0002F3E8 dd offset loc_2F08C ; jump table for switch statement
PAGE:0002F3E8 dd offset loc_2F0AF
PAGE:0002F3E8 dd offset loc_2F0B9
PAGE:0002F3E8 dd offset loc_2F0C3
PAGE:0002F3E8 dd offset loc_2F0F4
PAGE:0002F3E8 dd offset loc_2F125
PAGE:0002F3E8 dd offset loc_2F154

Where to Overwrite ?

 We can overwrite the first switch case at
0x2F3E8 with address of our shellcode

 Then, we call the DeviceIoControl()
again

 When it reach the first switch case
again, it will jump to our shellcode

 However, the value will always be
overwritten with 0x4 from this
vulnerability

Overwrite

 Address always overwritten with 0x4
 If we overwrite case 0 with 0x4, the next call to it will

jump to 0x00000004
 We cant allocate memory at 0x00000004
 So, we overwrite the first two bytes of the second case

Case 0 Case 1

Overwrite here at 2F3EE

XXXX00000004XXXXXXXXXXXX
2F3E8

… Overwrite

 Now, if we trigger Case 1, it will jump to:
 0x0004XXXX

 We can allocate memory 0x00040000
before calling Case 1

Case 0 Case 1

Overwrite here at 2F3EE

XXXX00000004XXXXXXXXXXXX

2F3E8

Jump to shellcode

 Device driver will jump in to
0x0004XXXX after the second signal

 We need to allocate specific memory
region:
 VirtualAlloc(0x00040000, 0xf000,

MEM_COMMIT, PAGE_EXECUTE_READWRITE);

 Copy our shellcode into the region

Kernel Shellcode (Eyas’ style)

 What do we need to execute?
 Written by Eyas
 http://www.xfocus.net/articles/200306/54

5.html
 Technique:

 Find System’s token
 Replace process’s token pointer with

System’s token

Find SYSTEM process

 Locate the ETHREAD
 fs:[0x124] or 0xffdff124

 From ETHREAD, we jump to EPROCESS
 Within EPROCESS, use

ActiveProcessLinks to loop into all active
process

 For each process, check the UniqueProcessId
 SYSTEM Pid is:

 Win2k = 8
 WinXP = 4

 Can use similar technique to find other PID

Locating SYSTEM process

…

*_EPROCESS

 _KAPC_STATE

_KTHREAD
_ETHREAD

FS:0x124

0x00

0x44

…
*Blink…
*Flink

struct _LIST_ENTRY
ActiveProcessLinks

…

…
*Token

*UniqueProcessId

_EPROCESS

Loop between processes

…
*Blink…
*Flink

struct
_LIST_ENTRY
ActiveProcessLinks

…

…
*Token

*UniqueProcessId

_EPROCESS

…
*Blink…
*Flink

struct
_LIST_ENTRY
ActiveProcessLinks

…

…
*Token

*UniqueProcessId

_EPROCESS

…
*Blink…
*Flink

struct
_LIST_ENTRY
ActiveProcessLinks

…

…
*Token

*UniqueProcessId

_EPROCESS

Replace Token Pointer

 Windows’s Security Reference Monitor (SRM)
uses token to identify process or thread

 To become SYSTEM, we just need a
SYSTEM token

 A pointer to SYSTEM token is inside its
EPROCESS

 Once we located SYSTEM process, we
change our process token to point to
SYSTEM token

Getting System Token

…
*Blink…
*Flink

struct
_LIST_ENTRY
ActiveProcessLinks

…

…
*Token

*UniqueProcessId

_EPROCESS

…
*Blink…
*Flink

struct
_LIST_ENTRY
ActiveProcessLinks

…

…
*Token

*UniqueProcessId

_EPROCESS

Guest Tokens

System Tokens

Guest process System process

Base address of Device Driver

 Need to overwrite the exact location of
switch table

 Device driver base memory may change
every boot

 Use NtQuerySystemInformation()
 Get SystemModuleInformation list
 Compare Module name to get based

address of any device driver

Getting process name

 Using NtQuerySystemInformation()
again but getting processes list
SystemProcessesAndThreadsInforma
tion

 Compare ProcessName to get
ProcessId

 For each ProcessId, escalate it to
SYSTEM

Proof of Concept

 The complete exploit is available from:
 www.scan-associates.net/papers/navx.c

Attack scenario

 Server allows us to
upload *.*

 But every time we
uploaded cmd.asp,
it disappeared

 Apparently, Norton
A/V detects cmd.asp
as trojan and delete
it

Encoding script

 Encode cmd.asp using Microsoft Script
Encoder
 http://www.microsoft.com/downloads/details.

aspx?FamilyId=E7877F67-C447-4873-
B1B0-21F0626A6329&displaylang=en

 Upload cmdx.asp to get arbitrary
command execution

 But we only get IUSR user

Privilege escalation

 Upload and run navx.exe
 Exploit escalate all DLLHOST into

SYSTEM
 Command in cmdx.asp is now running

as SYSTEM

Escalate any process to SYSTEM

 Using same exploit in WinXP

Last slide!

 Thank you HITB!
 Thank you!
 Any Question?
 Any Answer?

